
1 Introduction

This document serves as a reference for the mathematical framework used
to represent the polarization of electromagnetic waves and the polarimetric
response of instrumentation.

2 General Equations

2.1 Polarization

A monochromatic wave traveling in the positive z direction is given by

e(t) = a exp i(ωt − κz). (1)

At z = 0, a quasi-monochromatic electromagnetic wave is represented by

e(t) =

(

e0(t) = a0(t) exp i(ωt + φ0(t))
e1(t) = a1(t) exp i(ωt + φ1(t))

)

. (2)

The coherency matrix is defined as

ρ = 〈e(t)⊗ e†(t)〉 =

(

〈e0(t)e
∗
0
(t)〉 〈e0(t)e

∗
1
(t)〉

〈e1(t)e
∗
0
(t)〉 〈e1(t)e

∗
1
(t)〉

)

, (3)

where e† is the Hermitian transpose of e and the angular brackets denote
an ensemble average. The coherency matrix may be written as a linear
combination of Hermitian basis matrices

ρ =
1

2

3
∑

k=0

Skσk = (S0 σ0 + S · σ)/2, (4)

where σ0 is the 2 × 2 identity matrix, σ = (σ1,σ2,σ3) are the Pauli spin
matrices, S0 is the total intensity, or Stokes I, and S = (S1, S2, S3) is the
Stokes polarization vector. The Stokes parameters may also be expressed in
terms of the coherency matrix

Sk = tr(σkρ), (5)

where tr() is the matrix trace operator. The Pauli matrices are

σ1 =

(

1 0
0 −1

)

σ2 =

(

0 1
1 0

)

σ3 =

(

0 −i
i 0

)

. (6)
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2.1.1 Geometric Interpretation

The three-dimensional space of the Stokes polarization vector, S, is spanned
by the orthonormal basis vectors, ŝk, such that ŝk · S = Sk and ŝk · σ = σk.
Stokes Q, U , and V are calculated by the projection of S onto the Stokes
unit vectors, q̂, û, and v̂, respectively. This relationship is summarized by
p = (Q,U, V ) = RT S, where R = (q̂ û v̂) is a three-dimensional rotation
matrix with columns defined by the Stokes unit vectors. The orientation of
these basis vectors with respect to ŝk depends upon the reference frame in
which the electric field vector is represented.

2.2 Polarimetric Transformations

Linear transformations of the electric field are represented by complex 2× 2
Jones matrices. Under the operation, e′(t) = Je(t), the coherency matrix is
subjected to a congruence transformation, ρ′ = JρJ†.

An arbitrary Jones matrix with unit determinant may be parameterized
by its polar decomposition, exp[(β m̂ + iφ n̂)·σ]. The Hermitian matrices,

Bm̂(β) = exp(β m̂ · σ) = cosh β σ0 + sinh β m̂ · σ, (7)

effect a Lorentz boost of the Stokes 4-vector along the axis m̂ by an impact
parameter 2β. Likewise, the unitary matrices,

Rn̂(φ) = exp(iφ n̂ · σ) = cos φσ0 + i sin φ n̂ · σ, (8)

rotate the Stokes polarization vector about the axis n̂ by an angle 2φ.

2.3 Cartesian (Linear) Basis

In the Cartesian (or linear) basis, the plane wave propagates toward the
observer along the z-axis, and e0 = ex and e1 = ey are the components of the
electric field projected onto North and East, respectively; the Stokes vector,
S = (Q,U, V ), and

ρ =
1

2

(

I + Q U − iV
U + iV I − Q

)

. (9)

By comparison of equations 3 and 9

U + iV = 2〈e∗xey〉 = 2〈axay exp i(φy − φx)〉. (10)
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That is, Stokes V is positive when the phase of ey leads that of ex. Accord-
ing to Hamaker & Bregman (1996 A&ASS 117:161), the IEEE definition of
circular polarization is such that:

For right-handed circular polarization, the position angle of the
electric vector at any point increases with time; this implies that
the y component of the field lags the x component.

Therefore, in our reference frame, Stokes V is positive for left-handed circular
polarization (LCP). Although this is opposite to the IAU convention, in
which Stokes V is positive for right-handed circular polarization (RCP), it is
consistent with other authors, including Kraus and Born & Wolf.

2.4 Circular Basis

In the circular basis, e0 = el = e
†
l e, and e1 = er = e†

re, where e is the electric
field vector in the linear basis,

el =
1√
2

(

1
i

)

and er =
1√
2

(

1
−i

)

. (11)

The transformation from a linear to circular basis is then

C = (el er)
† =

1√
2

(

1 −i
1 i

)

. (12)

Under the congruence transformation, ρ′ = CρC†, S′ = (V,Q, U). The
basis vectors el and er are not the only possible representation of circularly
polarized receptors. For example, it could be argued that

(

1 −i
−i 1

)

is a better choice for the definition of C, because then the same input Stokes
parameters (1,0,1,0) will produce an equal and in-phase response in each
receptor regardless of linear or circular basis. However, after a transformation
with this matrix, S ′ = (V, U,−Q). The convention chosen in equation 12 is
the only orthonormal basis (ignoring absolute phase) that effects the required
cyclic permutation of the Stokes parameters. Its acceptance implies that
Stokes Q produces equal, in-phase responses in each receptor.
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3 Universal Feed Description

Under the congruence transformation, a Jones matrix has seven degrees of
freedom. One common parameterization is described in the following section.

3.1 Phenomenological Model

The response of an ideal feed with two orthogonally polarized receptors is
given by S(θ, ε) = Rû(ε)Rv̂(θ). Here, the receptors have ellipticity angles
equal to ε and mutually perpendicular orientations defined by θ. Using this
notation, a feed with non-orthogonal receptors is represented by

F = δ0S(θ0, ε0) + δ1S(θ1, ε1), (13)

where δa is the 2× 2 selection matrix, such that the product, δaB, returns a
matrix that contains only the ath row of B. The differential gain and phase of
the instrument are represented by Bŝ1

(γ) and Rŝ1
(ϕ). Including the absolute

gain, G, the Jones matrix that describes the instrumental response is

J = G Bŝ1
(γ)Rŝ1

(ϕ)F. (14)

The seven scalar parameters are the gain G, the differential gain γ, the
differential phase ϕ, the receptor orientations θ0−1, and ellipticity angles ε0−1.

3.2 Parameterization of Feed Configuration

Although it is possible to completely determine all seven degrees of freedom in
the instrumental response, it is often not feasible. In most cases, a reference
source is used to calibrate only the differential gain and phase of the backend.
Even when it is possible to determine the receptor orientation and ellipticity
angles, it may still be preferable to model them as small corrections to a
known feed configuration. The following sections describe various ways to
parameterize the known configuration of the feed and reference source.

3.2.1 Universal

As already stated, an ideal feed with two orthogonally polarized receptors
is described by its orientation and ellipticity angles, θ and ε. For a linear
feed, θ = ε = 0, and for a circular feed, θ = ε = π/4. The polarization of
the reference source can also be completely described by an orientation and
ellipticity angle pair.
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3.2.2 Practical

Although the receptor angles are sufficient to completely describe an ideal
feed, it may be preferable to use more commonly encountered and/or more
readily measured quantities. The description may also be simplified by as-
suming that the reference source is linearly polarized. At Parkes, the follow-
ing parameters are available:

• basis: circular or linear

• hand: left or right-handed

• reference angle: feed angle of the electric field vector that induces an
equal, in-phase response in each receptor

• calibrator phase: differential phase (tan−1(S3/S2)) of the internal
reference source

Linear Basis: The reference angle has a nominal value of 45 degrees. Since
S2 = U and S3 = V = 0, there are only two possible values for the calibrator

phase: 0 (U > 0) and 180 (U < 0) degrees.

Circular Basis: The reference angle has a nominal value of 0 degrees. Since
S2 = Q and S3 = U , the calibrator phase is arbitrary.

Given these parameters, the Jones matrix of the feed is the product

J = XCRv̂(Θ), (15)

where C is the identity in the linear basis and equal to equation 12 in the
circular basis, X is the identity in a right-handed system and the exchange
matrix in a left-handed system, and Θ is equal to the reference angle minus
its nominal value. The coherency matrix of the reference source is given by

ρc =
1

2

(

1 exp−iΦc

exp iΦc 1

)

.

where Φc is the calibrator phase.
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3.3 Complex Conjugation

Complex conjugation of the electric field can occur, for example, during lower
sideband down conversion or when the design of an instrument is based upon
a different convention for the sign of the phase than in equation 1. Complex
conjugation cannot be represented by a product with a Jones matrix; it
results in a sign change in S3, or reflection through the ŝ1-ŝ2 plane.

4 Implementation

Each of the various properties described in the preceding sections have a
corresponding parameter in the PSRFITS definition and a representation in
the PSRCHIVE software.

4.1 PSRFITS

The following table summarizes the properties that are described by the
PSRFITS file format, the range of acceptable values for each parameter, and
the effect that they have on calibrated data.

Table 1: PSRFITS header parameters related to polarimetric corrections.

Parameter PSRFITS Range Effect
Name Linear Circular

Backend Phase BE PHASE +/-1 +/- V +/- U
Downconversiona BE DCC 0/1 +/- V +/- U
Feed Basis FD POLN LIN or CIRC (Q,U,V) (V,Q,U)
Feed Hand FD HAND +/- 1 +/- Q&V +/- U&V
Reference Angle FD SANG −π/2 < θ < π/2 Rv̂(Θ)
Calibrator Phaseb FD XYPH −π < Φc < π +/- U&V Rv̂(Φc/2)
a Applies only when Archive::bandwidth is negative
b In the linear basis, Φc = 0 or π
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4.2 PSRCHIVE

Polarization parameters are stored in the Backend and Receiver classes,
both of which inherit the Archive::Extension base class.

4.2.1 Backend Phase

The backend phase is stored in the argument attribute of the Backend class.
The correction of phase conjugation is performed in the correct backend

method of the PolnCalibrator class. Both source and calibrator observa-
tions are corrected.

4.2.2 Downconversion Conjugation Corrected

This flag is stored in the downconversion corrected attribute of the Backend
class. When this flag is false and the bandwidth attribute of the Archive

class is negative, the correction of phase conjugation is performed in the
correct backend method of the PolnCalibrator class. Both source and
calibrator observations are corrected.

4.2.3 Feed Basis

The feed basis is stored in the basis attribute of the Receiver class. This at-
tribute controls the conversion between Stokes parameters and the coherency
matrix, as performed by the convert state method of the PolnProfile

class, and by the convert and coherency functions defined in Pauli.h.
The conversion functions in Pauli.h use the Pauli::basis attribute. Both
source and calibrator observations are affected by a change in basis.

4.2.4 Feed Hand

The feed hand is stored in the hand attribute of the Receiver class. It im-
pacts upon the Jones matrix returned by Receiver::get transformation,
which is used by the calibrate method of the CorrectionsCalibrator

class. Only source observations are affected by the feed hand.

4.2.5 Reference Angle

The reference angle is stored in the field orientation attribute of the
Receiver class. This attribute impacts upon the Jones matrix returned by
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Receiver::get transformation, which is used by the calibrate method
of the CorrectionsCalibrator class. Only source observations are affected
by the reference angle.

4.2.6 Calibrator phase

The calibrator phase is stored in the reference source phase attribute of
the Receiver class. This attribute determines the Stokes parameters re-
turned by the Receiver::get reference source method, which is used by
the children of the ReferenceCalibrator class to determine differential gain
and phase.
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