
1 Absolute Flux Calibration

Absolute flux calibration is performed using observations of a standard candle, an

astronomical source with stable flux density that is well modelled over a broad range

of radio frequencies. Two sets of observations are made: an artificial noise source is

switched on and off while the telescope is pointed at 1) the standard candle and 2) a

nearby patch of sky that is assumed to be empty. Examples of such observations are

shown in Figure 1. The integration lengths for the on- and off-source observations need

not necessarily be equal if the data represent mean flux densities. In PSRCHIVE, two

different assumptions can be applied to the analysis of these observations:

1. Adjusted Gain: The absolute gain of the system is adjusted at the start of each

observation and may be different when pointing at the standard candle and point-

ing away from the standard candle. Gains are typically adjusted in order to main-

tain linearity when the observing system has limited dynamic range.

2. Fixed Gain: The absolute gain of the system is not adjusted, but may be different

when the noise source is on and the noise source is off. Gains are typically

held constant when the system can be safely assumed to have sufficient dynamic

range. Any variation in gain between on and off states of the noise source is

typically unintentional; it is usually evidence that the artificial noise source signal

is too strong, such that it drives the system into a nonlinear regime.

1.1 Adjusted Gain

By default, fluxcal assumes that the absolute gain of the system is adjusted at the

start of each observation. In this case,

Hon = gon(Ssys + S0 + C0) Hoff = goff(Ssys + C0)
Lon = gon(Ssys + S0) Loff = goffSsys

where gon and goff are the unknown absolute gains of the instrument while pointing on

and off the standard candle, Ssys is the unknown system equivalent flux density, S0 is

the known flux density of the standard candle, and C0 is the unknown flux density of

the receiver noise source. Then,

fon =
Hon

Lon

− 1 =
C0

Ssys + S0

(1)

and

foff =
Hoff

Loff

− 1 =
C0

Ssys

(2)

and
1

fon
−

1

foff
=

S0

C0

(3)

Equation 3 is solved for C0, then Equation 2 is solved for Ssys.
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Figure 1: Observations of the Parkes Multibeam receiver noise source. The total inten-

sity from a single 500 kHz channel was integrated for approximately 80 s. In the top

panel, the telescope was pointed at 3C 218 (Hydra A); the mean on-pulse power (green)

is used to estimate Hon and the mean off-pulse power (red) is used to estimate Lon. In

the bottom panel, the telescope was pointed 2 deg north; the mean on-pulse power is

used to estimate Hoff and the mean off-pulse power is used to estimate Loff .
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In practice, when using the Adjusted Gain model, fon (Equation 1) is computed for

each on-source observation and integrated into an inverse-variance-weighted average;

likewise foff (Equation 2) is computed for each off-source observation and integrated

into a separate inverse-variance-weighted average. After all on- and off-source obser-

vations have been integrated, Equation 3 is computed. Averages are computed for fon
and foff (instead of Hon, Hoff , Lon, and Loff ) because the gains, gon and goff , may

vary from observation to observation, such that inverse-variance-weighting would give

lower weight to observations made with greater gain.

First-order error propagation is used to compute the variances of fon and foff ; how-

ever, owing to the non-linear nature of Equations 1 and 2, the derived uncertainties are

likely incorrect at some level. Because these variances are used in the weighted aver-

ages, inaccuracies in error propagation might possibly contribute to greater scatter of

the derived values of Ssys.

1.2 Fixed Gain

If the absolute gain of the system is not adjusted at the start of each observation,

fluxcal -g assumes that the gain may unintentionally vary between noise source

on and noise source off states. Unintentional variation in gain may arise from a non-

linear component in the signal chain (e.g. an amplifier that is driven into compression,

or a directional coupler with an impedence that depends on the strengths of the input

signals). In this case,

Hon = gH(Ssys + S0 + C0) Hoff = gH(Ssys + C0)
Lon = gL(Ssys + S0) Loff = gLSsys

where gH and gL are the unknown absolute gains of the instrument while the receiver

noise source is on and off, respectively. Then,

fH =
Hon

Hoff

− 1 =
S0

Ssys + C0

(4)

and

fL =
Lon

Loff

− 1 =
S0

Ssys

(5)

and
1

fH
−

1

fL
=

C0

S0

(6)

For a system that responds linearly to its inputs, the gain ratio,

rg =
Hon −Hoff

Lon − Loff

=
gH

gL
, (7)

should be equal to unity. Furthermore, because gH or gL are nominally equal, there are

multiple ways to define the absolute gain of the system, which is given by either gH or

gL or some average of the two (e.g. either the algebraic or geometric mean). In the case

3



of nonlinear response to a strong artificial noise source, gL most closely reflects the

response of the system to an astrophysical signal. Under this assumption, the absolute

gain of the system is given by

gL =
Lon − Loff

S0

(8)

Equation 6 is solved for C0, Equation 5 is solved for Ssys, and Equation 8 defines

the absolute gain that can be used to calibrate sources observed with the same instru-

mental configuration without any need for an observation of the artificial noise source.

In practice, when using the Fixed Gain model, inverse-variance-weighted averages

are computed for Hon, Hoff , Lon, and Loff . Equations 4 through 8 are computed only

after all on- and off-source observations have been integrated.
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